3.7. ВЕРИФИКАЦИЯ МОДЕЛИ ПРОЕКЦИОННОЙ СРАВНИ-ТЕЛЬНОЙ ОЦЕНКИ АЛЬТЕРНА-ТИВ В ЭКОНОМИКЕ

Лапаева О.Н., к.э.н., доцент кафедра «Экономическая теория и эконометрика»

Нижегородский государственный технический университет им. Р.Е. Алексеева, г. Нижний Новгород

Перейти на ГЛАВНОЕ МЕНЮ

В статье обсуждается верифицируемость авторской модели проекционной сравнительной оценки альтернатив в экономике. Оценена структура и логика построения модели, охарактеризованы основные процессы принятия решений, выявлены возможные дисфункции в области многокритериальности, проекционности, учета интересов сторон и фактора времени. Показано, что дисфункции успешно преодолимы с помощью заложенных в модель корректирующих воздействий. Модель является адекватной и обеспечивает достижение цели исследования.

Под верификацией модели понимают оценку ее адекватности той конкретной задаче / проблеме, для решения которой она применяется. С позиций заданной цели модель адекватна объекту, если она обеспечивает достижение этой цели. Верификация предусматривает тщательную проверку правильности структуры и логики модели, способности ее операционного использования и формирования окончательного решения [1; 10]. Модель проекционной сравнительной оценки альтернатив в экономике имеет блочную конструкцию [8]. В каждой проекции

производится классический многокритериальный выбор. Задается перечень показателей и сравниваемых вариантов (альтернатив).

Выделяется множество альтернатив, оптимальных в некотором смысле. Затем каждая заинтересованная сторона (стейкхолдер) формирует многопроекционное решение посредством пересечения множеств проекций. Далее взаимоприемлемое решение определяется путем пересечения индивидуальных множеств сторон. Для проведения анализа в развитии на некоторую перспективу предусмотрен блок прогнозирования / планирования состояния альтернатив. Другим ключевым элементом модели выступает проверка достижения цели исследования и проведение корректирующих мероприятий. Допускается пересматривать совокупность альтернатив, стейкхолдеров, проекций и показателей, состав принципов и методов оптимизации, прогнозирования и планирования, дату проведения анализа, а также исходную цель.

Структура и логика построения модели находятся в русле классического принятия многокритериальных решений заинтересованными сторонами [2-9] и не вызывают сомнений. Исходная информация вполне доступна. Поэтому далее проследим ключевую цепочку решение в проекции — многопроекционное решение — взаимоприемлемое решение, установим возможные дисфункции и рассмотрим пути их преодоления. Начнем с многокритериального выбора. Подлежат анализу варианты (альтернативы) $S_1 - S_{12}$, представленные в табл. 1.

Одно лицо, принимающее решение (ЛПР), оперирует единственной проекцией.

Таблица 1

ПОЗИЦИЯ ПЕРВОГО СТЕЙКХОЛДЕРА, ПРОЕКЦИЯ 1

Показатели		Сравниваемые альтернативы в порядке возрастания эффективности										
1	S ₁₀	S ₁₀ S ₈ S ₁ S ₂ S ₁₁ S ₃ S ₇ S ₆ S ₉ S ₁₂ S ₅ S ₄										
2	S₄	S ₂	S ₅	S ₆	S ₇	S ₁₀	S₃	S ₁₁	S ₁₂	S ₁	S ₈	S ₉
3	S ₅	S ₁₂	So	S	S₄	Se	S11	S ₁	S ₆	S ₇	S ₂	S ₁₀

Определим лучшую альтернативу. Согласно [7] выделяем опорные варианты S_4 , S_9 и S_{10} , характеризуемые оптимальными величинами показателей.

От альтернативы S_4 с улучшением второго показателя можно перейти к прочим вариантам, а с улучшением третьего — к S_1 , S_2 , S_6 — S_8 , S_{10} и S_{11} . При этом множество приемлемых альтернатив примет вид M_4 = { S_1 , S_2 , S_6 , S_7 , S_8 , S_{10} , S_{11} }.

От альтернативы S_9 с улучшением первого показателя можно перейти к вариантам S_4 , S_5 и S_{12} , а с улучшением третьего — к S_1 — S_4 , S_6 — S_8 , S_{10} и S_{11} . Тогда множество приемлемых альтернатив запишем в виде $M_9 = \{S_4\}$.

От альтернативы S_{10} с улучшением первого показателя можно перейти к остальным вариантам, а с улучшением второго — к S_1 , S_3 , S_8 , S_9 , S_{11} и S_{12} . Получим следующее множество приемлемых альтернатив $M_{10} = \{S_1, S_3, S_8, S_9, S_{11}, S_{12}\}$.

Полученные множества не пересекаются и единое решение не фокусируется.

Сформируем паретовское множество. Ранее определены эффективные варианты S_4 , S_9 и S_{10} . Согласно [2-5] формируем доминируемые области. Они не содержат альтернатив. Дальнейшему анализу подлежат варианты $S_1 - S_3$, $S_5 - S_8$, S_{11} и S_{12} . На втором этапе выделяем эффективные альтернативы S_5 , S_8 и S_2 .

Доминируемые области отсутствуют. Остается сопоставить варианты S_1 , S_3 , S_6 , S_7 , S_{11} и S_{12} . Имеем эффективные альтернативы S_{12} , S_1 и S_7 . Доминируемые области отсутствуют.

Ранг завершат взаимно несравнимые варианты S_3 , S_6 и S_{11} . Эффективное множество ЛПР примет вид $M1_{13\phi} = \{S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_{10}, S_{11}, S_{12}\}$. Таким образом, не наблюдается ожидаемой селекции альтернатив. Причем и точное, и эффективное решения объективны в принятой системе показателей.

Для устранения отмеченных дисфункций произведем замену первого показателя на новый, сохранив второй и третий. Необходимость корректировки состава показателей может быть продиктована различными причинами.

Например, низкой точностью прогнозирования в силу высокой волатильности. Исходная информация сведена в табл. 2.

Таблица 2

ПОЗИЦИЯ ПЕРВОГО СТЕЙКХОЛДЕРА, ПРОЕКЦИЯ 1 (СКОРРЕКТИРОВАННАЯ)

Показатели		Сравниваемые альтернативы в порядке возрастания эффективности										
1 новый	S₄	S4 S5 S12 S2 S11 S3 S7 S6 S9 S1 S8 S11										
2	S₄	S ₂	S ₅	S ₆	S ₇	S ₁₀	S₃	S ₁₁	S ₁₂	S ₁	S ₈	S ₉
3	S ₅	S ₁₂	S₄	S ₃	S₄	Sa	S ₁₁	S ₁	S ₆	S ₇	S ₂	S ₁₀

Выделим лучшую альтернативу. Имеем опорные варианты S_{10} , S_9 и S_{10} .

От альтернативы S_{10} с улучшением двух показателей переход неосуществим – $M_{10} = \{S_{10}\}$.

От альтернативы S_9 с улучшением первого показателя можно перейти к вариантам S_1 , S_8 и S_{10} , а с улучшением третьего — к S_1 — S_4 , S_6 — S_8 , S_{10} и S_{11} . Тогда множество приемлемых альтернатив запишем в виде M_9 = $\{S_1, S_8, S_{10}\}$.

В итоге получим единственное решение $M1_{tonm} = \{S_{10}\}$.

Сформируем паретовское множество. Ранее определены эффективные варианты S_{10} и S_{9} . Формируем доминируемые области. Первая и третья области включают варианты S_2 и S_4-S_7 , а вторая – S_5 и S_{12} . Дальнейшему анализу подлежат варианты S_1 , S_3 , S_8 и S_{11} . На втором этапе выделяем эффективные альтернативы S_8 и S_1 . Формируем доминируемые области. Первая и вторая области включают вариант S_3 , а третья – варианты S_3 и S_{11} . Эффективное множество примет вид $M1_{12\phi} = \{S_1, S_8, S_9, S_{10}\}$.

Перейдем ко второму рангу. Остается сопоставить варианты $S_2 - S_7$, S_{11} и S_{12} . Получим альтернативы

второго ранга S_6 , S_{12} и S_2 . Формируем доминируемые области. Первая область включает варианты S_4 и S_5 , вторая — альтернативу S_5 , а третья — S_4 . Ранг завершат взаимно несравнимые варианты S_3 , S_7 и S_{11} . Множество второго ранга запишем в виде $M1_{1/2p} = \{S_2, S_3, S_6, S_7, S_{11}, S_{12}\}$. Несравнимые альтернативы S_4 и S_5 составят заключительный третий ранг — $M1_{1/3p} = \{S_4, S_5\}$. В результате выделено паретовское множество и сформированы последующие ранги.

Таким образом, корректировка показателей может способствовать поиску лучших альтернатив и построению рангов.

Отметим, что на выбор лучших альтернатив и формирование рангов также влияет состав исходного множества сравниваемых вариантов. Учет ограничений на области допустимых значений показателей может приводить к исключению части объектов анализа. Кроме того, по необходимости задействуется метод выделения главного показателя, сводящий задачу к однокритериальному выбору.

Обратимся собственно к проблематике проекционного выбора. Дополним позицию ЛПР второй проекцией, представленной в табл. 3.

Таблица 3

ПОЗИЦИЯ ПЕРВОГО СТЕЙКХОЛДЕРА, ПРОЕКЦИЯ 2

Показатели		Сравниваемые альтернативы в порядке возрастания эффективности										
1	S ₁	S₃	S ₁₀	S₄	S ₁₁	S ₈	S₅	S ₆	S ₁₂	S ₉	S ₂	S ₇
2	S₃	S₄	S ₅	S ₁₀	S₁	S ₁₂	S ₁₁	S ₈	S ₉	S ₇	S ₂	S_6
3	S₅	S ₁₂	S ₇	S ₉	S₄	S ₁₁	S ₁	S ₁₀	S ₆	S₃	S ₂	S ₈

Определим лучшую альтернативу. Имеем опорные варианты S_7 , S_6 и S_8 .

От альтернативы S_7 с улучшением второго показателя можно перейти к вариантам S_2 и S_6 , а с улучшением третьего – к S_1 – S_4 , S_6 и S_8 – S_{11} . При этом множество приемлемых альтернатив примет вид M_7 = { S_2 , S_6 }.

От альтернативы S_6 с улучшением первого показателя можно перейти к вариантам S_2 , S_7 , S_9 и S_{12} , а с улучшением третьего — к S_2 , S_3 и S_8 . Тогда множество приемлемых альтернатив запишем в виде $M_6 = \{S_2\}$.

От альтернативы S_8 с улучшением первого показателя можно перейти к вариантам S_2 , $S_5 - S_7$, S_9 и S_{12} , а с улучшением второго – к S_2 , S_6 , S_7 и S_9 . Получим следующее множество приемлемых альтернатив $M_8 = \{S_2, S_6, S_7, S_9\}$. В итоге получим единственное решение $M1_{20nm} = \{S_2\}$.

Совместный анализ информации табл. 2 и 3 не позволяет получить многопроекционное решение на уровне единственных альтернатив. Для устранения дисфункции задействуем паретовские множества.

Ранее отобраны эффективные варианты S_7 , S_6 и S_8 (см. табл. 3). Формируем доминируемые области. Первая область включает альтернативы S_5 и S_{12} , вторая — S_1 , S_4 , S_5 , S_{10} и S_{11} , а третья — S_1 , S_3 , S_4 , S_{10} и S_{11} . Среди оставшихся вариантов S_2 и S_9 доминирует второй.

Эффективное множество примет вид $M1_{29\phi} = \{S_2, S_6, S_7, S_8\}$. Тогда на уровне эффективных вариантов получим многопроекционное решение ЛПР в виде $M1_{9\phi} = \{S_8\}$. Таким образом, переход от анализа лучших альтернатив к вариантам, оптимальным по Парето, может способствовать поиску решений в рамках проекционного подхода.

Таблица 4

ПОЗИЦИЯ ВТОРОГО СТЕЙКХОЛДЕРА, ПРОЕКЦИЯ 1

Показатели			Сравни	заемые а	льтернат	гивы в по	рядке в	озрастан	ия эффе	ктивност	и	
1	S₃	S₁	S ₆	S₄	S ₇	S ₈	S ₉	S ₁₀	S₅	S ₂	S ₁₁	S ₁₂

Показатели		Сравниваемые альтернативы в порядке возрастания эффективности										
2	S₀	S₅	S₄	S ₁₀	S ₁₂	S ₁	S ₂	S₃	S ₇	S ₈	S ₁₁	S ₆
3	S ₉	S ₇	S ₅	S ₁₂	S ₈	S ₁₀	S ₂	S_6	S₁	S ₁₁	S₄	S₃

Далее перейдем к учету интересов сторон. Рассмотрим позицию второго стейкхолдера, представленную двумя проекциями в табл. 4 и 5.

Определим лучшую альтернативу. Имеем опорные варианты S_{12} , S_6 и S_3 .

От альтернативы S_{12} с улучшением второго показателя можно перейти к вариантам $S_1 - S_3$, $S_6 - S_8$ и S_{11} , а с улучшением третьего – к $S_1 - S_4$, S_6 , S_8 , S_{10} и S_{11} . При этом множество приемлемых альтернатив примет вид $M_{12} = \{S_1, S_2, S_3, S_6, S_8, S_{11}\}$. От альтернативы S_6 с улучшением первого показателя можно

перейти к вариантам S_2 , S_4 , S_5 и $S_7 - S_{12}$, а с улучшением третьего – к S_1 , S_3 , S_4 и S_{11} . Тогда множество приемлемых альтернатив запишем в виде $M_6 = \{S_4, S_{11}\}$.

От альтернативы S_3 с улучшением первого показателя можно перейти к прочим вариантам, а с улучшением второго – к S_6 – S_8 и S_{11} . Получим следующее множество приемлемых альтернатив M_3 = $\{S_6, S_7, S_8, S_{11}\}$. В итоге получим единственное решение M_{210nm} = $\{S_{11}\}$. Обратимся ко второй проеклии

Таблица 5

ПОЗИЦИЯ ВТОРОГО СТЕЙКХОЛДЕРА, ПРОЕКЦИЯ 2

Показатели		Сравниваемые альтернативы в порядке возрастания эффективности										
1	S ₈	S ₉	S ₁	S ₂	S ₁₂	S ₁₀	S ₁₁	S ₆	S₄	S ₅	S ₇	S₃
2	S ₁₁	S₅	S ₂	S ₁	S₃	S ₄	S ₈	S ₁₀	S ₁₂	S ₇	S ₉	S ₆
3	S₃	So	S ₁₁	S _R	S ₆	S₁	S ₂	S ₁₂	S₄	S ₅	S ₇	S ₁₀

Определим лучшую альтернативу. Имеем опорные варианты S_3 , S_6 и S_{10} .

От альтернативы S_3 с улучшением второго показателя можно перейти к вариантам S_4 , $S_6 - S_{10}$ и S_{12} , а с улучшением третьего – к любым вариантам. При этом множество приемлемых альтернатив примет вид $M_3 = \{S_4, S_6, S_7, S_8, S_9, S_{10}, S_{12}\}$.

От альтернативы S_6 с улучшением первого показателя можно перейти к вариантам $S_3 - S_5$ и S_7 , а с улучшением третьего – к S_1 , S_2 , S_4 , S_5 , S_7 , S_{10} и S_{12} . Тогда множество приемлемых альтернатив запишем в виде $M_6 = \{S_4, S_5, S_7\}$.

От альтернативы S_{10} с улучшением первого показателя можно перейти к вариантам $S_3 - S_7$ и S_{11} , а с улучшением второго – к S_6 , S_7 , S_9 и S_{12} . Получим следующее множество приемлемых альтернатив $M_{10} = \{S_6, S_7\}$.

В итоге получим единственное решение $M2_{20nm} = {S_7}$.

Совместный анализ информации таблиц 4 и 5 не позволяет получить многопроекционное решение на уровне лучших альтернатив. Определим паретовские множества.

Ранее отобраны эффективные варианты S_{12} , S_6 и S_3 . Формируем доминируемые области. Первая область включает альтернативы S_5 и S_9 , а вторая и третья — не содержат альтернатив. Дальнейшему анализу подлежат варианты S_1 , S_2 , S_4 , S_7 , S_8 , S_{10} и S_{11} . На втором этапе выделяем эффективные альтернативы S_{11} и S_4 . Формируем доминируемые области. Первая и вторая области включают оставшиеся варианты. Эффективное множество для табл. 4 примет вид $M2_{13\phi} = \{S_3, S_4, S_6, S_{11}, S_{12}\}$.

Во второй проекции получены эффективные варианты S_3 , S_6 и S_{10} . Формируем доминируемые области. Первая область не содержит альтернатив, вторая — включает варианты S_8 , S_9 и S_{11} , а вторая — третья S_1 , S_2 и S_8 . Дальнейшему анализу подлежат альтернативы S_4 , S_5 , S_7 и S_{12} . Среди них доминирует вариант S_7 . Эффективное множество для табл. 5 запишем в виде $M2_{29\phi} = \{S_3, S_6, S_7, S_{10}\}$.

Совместный анализ эффективных множеств табл. 4 и 5 позволяет получить многопроекционное решение второго стейкхолдера $M2_{3\phi} = \{S_3, S_6\}$. Ранее из табл. 2 и 3 определено эффективное решение первого стейкхолдера $M1_{3\phi} = \{S_8\}$. Следовательно, согласие сторон отсутствует.

Для устранения дисфункции задействуем второй ранг в табл. 2. Тогда квазиэффективное множество первой стороны в одноименной проекции примет вид $M1_{1\kappa_3\phi} = \{S_1, S_2, S_3, S_6, S_7, S_8, S_9, S_{10}, S_{11}, S_{12}\}$. С учетом табл. 3 получим многопроекционное решение в виде $M1_{\kappa_3\phi} = \{S_2, S_6, S_7, S_8\}$. Принимая во внимание позицию второго стейкхолдера, имеем взаимоприемлемое решение $M_{8\pi} = \{S_6\}$. Таким образом, использование альтернатив первого и нижестоящих рангов также способствует достижению цели моделирования.

В случае отсутствия согласованных индивидуальных и взаимоприемлемых решений стейкхолдеры могут снизить размерность исходной задачи, отказавшись от оптимизации одной и более проекций, либо приняв некоторую проекцию за главную. Для выработки общих решений сторонам следует сближать позиции в плане единства оценочных показателей, что способствует достижения компромисса.

Как отмечалось ранее, авторская динамическая модель содержит элементы прогнозирования. Для обеспечения надлежащей точности в зависимости от специфики исходной информации в модели комплексно применяются как простые, так и сложные адаптивные методы. Хотя и они не всегда дают желаемый результат в случае высокой волатильности. Для устранения дисфункции такие показатели следует исключить.

выводы

 Авторская модель проекционной сравнительной оценки альтернатив в экономике имеет блочную конструкцию и предусматривает получение решений в проекциях, формирование многопроекционных решений и выделение

- взаимоприемлемого решения стейкхолдерами на основе как фактических, так и прогнозных данных.
- Модель обеспечивает проверку достижения цели исследования и проведение соответствующих корректирующих мероприятий.
- Структура и логика построения модели вполне оправданы и корреспондируют с традиционным принятием взаимоприемлемых многокритериальных решений заинтересованными сторонами.
- 4. Возможные дисфункции в сфере многокритериальности, проекционности, учета интересов сторон и фактора времени успешно устраняются путем пересмотра совокупности альтернатив, стейкхолдеров, проекций и показателей, состава принципов и методов оптимизации, прогнозирования и планирования, времени проведения анализа, а также исходной цели.
- Модель является адекватной, поскольку обеспечивает операционное использование и достижение цели исследования.

Литература

- Большой экономический словарь [Текст] / под ред. А.Н. Азрилияна. – М.: Ин-т новой экономики, 2004. – 1376 с.
- 2. Лапаев Д.Н. Многокритериальное принятие решений в экономике [Текст] : монография / Д.Н. Лапаев. Н. Новгород : ВГИПУ, 2010. 362 с.
- Лапаев Д.Н. Многокритериальное принятие решений в экономике [Текст] : монография / Д.Н. Лапаев. – Н. Новгород : НГТУ, 2016. – 281 с.
- Лапаев Д.Н. Многокритериальное сравнение альтернатив в экономике [Текст] : монография / Д.Н. Лапаев, О.Н. Лапаева. – Н. Новгород : ВГИПУ, 2011. – 216 с.
- 5. Лапаев Д.Н. Многокритериальное сравнение альтернатив в экономике [Текст] : монография / Д.Н. Лапаев, О.Н. Лапаева. Н. Новгород : НГПУ, 2012. 232 с.
- Лапаева О.Н. Классификация задач сравнительной оценки альтернатив в экономике [Текст] / О.Н. Лапаева // Гуманизация образования. – 2014. – №5. – С. 96-102.
- Лапаева О.Н. Многокритериальная оценка экономического состояния предприятий и отраслей промышленности и выбор предпочтительных альтернатив [Текст] : монография / О.Н. Лапаева. – Н. Новгород : НГТУ, 2015. – 145 с.
- Лапаева О.Н. Модель проекционной сравнительной оценки альтернатив в экономике [Текст] / О.Н. Лапаева // Аудит и финансовый анализ. – 2017. – №2. – С. 83-86.
- Лапаева О.Н. Постановка и анализ задач многопроекционного принятия решений в экономике [Текст] / О.Н. Лапаева // Гуманизация образования. 2015. №3. С. 112-116.
- 10. Экономико-математический энциклопедический словарь [Текст] / гл. ред. В.И. Данилов-Данильян. М. : ИНФРА-М, 2003. 688 с.

Ключевые слова

Модель; целеполагание; многопроекционное решение; заинтересованная сторона; взаимоприемлемое решение; верификация; адекватность; структура; логика; операционное использование; дисфункция; корректировка параметров.

Папаева Ольга Николаевна

РЕЦЕНЗИЯ

Под альтернативами (вариантами) в экономике понимают различные объекты анализа на микро-, мезо- и макроуровнях. При этом основными заинтересованными сторонами, как правило, выступают: собственники, менеджеры, инвесторы, кредиторы, представители государственных органов власти и пр. В рамках проекционного подхода ключевым этапом в исследовании задач сравнительной оценки альтернатив является построение адекватной модели принятия решений.

Авторская детерминированная, оптимизационная, динамическая модель с элементами прогнозирования и планирования имеет модульную конструкцию. В каждой проекции реализуется многокритериальный выбор, базирующийся на применении принципов доминирования и Парето, метода выделения главного показателя, а также новых достижений в сфере анализа тонкой структуры эффективных множеств. Далее формируется многопроекционное решение путем пересечения оптимальных множеств всех проекций. Согласно модели, взаимоприемлемое решение находится аналогично посредством пересечения индивидуальных множеств стейкхолдеров. Таким образом, структура и логика модели отвечают классическим теоретико-методологическим разработкам в области многокритериального выбора и не вызывают нареканий. Исходная информация также вполне доступна для проведения сравнительного анализа.

Рассматривая сквозное принятие многокритериальных, многопроекционных и взаимоприемлемых решений, автор акцентирует внимание на типичных барьерах, препятствующих их выработке. Таких препятствий несколько. В многокритериальной постановке не всегда удается отобрать лучшую альтернативу, произвести ранжирование и упорядочение, что обусловлено противоречивостью оценочных показателей. Могут не пересекаться оптимальные множества проекций, отсутствовать компромиссные решения заинтересованных сторон, не достигаться требуемая точность прогноза коэффициентов.

Для преодоления указанных барьеров в модели предусмотрен блок корректирующих воздействий. При необходимости изменению подлежит состав показателей, проекций, сравниваемых вариантов, стейкхолдеров, набор принципов и методов оптимизации и прогнозирования, исходная цель и пр. Как убедительно показано в статье, в комплексе предписанные коррективы обеспечивают достижение цели исследования, что свидетельствует об успешной верификации авторской модели.

На основании вышеизложенного считаю, что статья к.э.н. О.Н. Лапаевой отвечает всем требованиям, предъявляемым к публикациям в изданиях из перечня Высшей аттестационной комиссии Министерства образования и науки РФ. Работа рекомендуется к опубликованию в журнале «Аудит и финансовый анализ».

Дмитриев М.Н., д.э.н., профессор, заведующий кафедрой экономики, финансов и статистики Нижегородского государственного архитектурно-строительного университета, г. Нижний Новгород.

Перейти на ГЛАВНОЕ МЕНЮ