3.2. ЭКОНОМЕТРИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ ДОХОДА ГОСУДАРСТВА НА 2015-Й И 2016 гг.

Галочкин В.Т., к.ф.-м.н., доцент, кафедра «Системный анализ и моделирование экономических процессов»

Финансовый университет при Правительстве РФ

В статье дан прогноз величины доходов Российской Федерации в 2015-м и 2016 гг. Прогноз выполнен, опираясь на официальные данные основных статей дохода, составляющих бюджет РФ за период 2002-2014 гг. Предложены пути повышения доходной части бюджета РФ.

Бюджетная политика государства в значительной мере зависит от качества и точности планирования доходной части бюджета. Основными показателями качества прогноза служат его надежность и точность. Важным этапом прогнозирования является верификация прогнозов, т.е. оценка их точности и обоснованности. На этапе верификации используют совокупность критериев, способов и процедур, которые дают возможность оценить качество прогноза.

В настоящей работе методами эконометрики осуществляется прогноз доходной части бюджета Российской Федерации на 2015-й и 2016 гг. Из всего многообразия параметров, составляющих доходы государства, выбраны пять основных, а параметры, не вошедшие в эту группу, отнесены к шестой группе.

Методы эконометрики применяются для кратко- и среднесрочного прогнозирования в условиях нестабильной экономической среды, зависящей от влияния различных внешних и внутренних факторов. Эффективность данных методов повышается по мере совершенствования экономической системы и стабилизации тенденций ее развития. Недостаток эконометрических методов — повышенная сложность и стоимость реализации, а достоинство — возможность прогнозирования бюджетных показателей, наиболее чувствительных к изменениям экономических условий.

Временной интервал для эконометрического оценивания выбирался на основе имеющейся в открытом доступе информации. Интервал в 12-15 лет является достаточным для получения достоверных результатов методами эконометрических расчетов.

Оценка прогноза доходной части бюджета РФ по шести параметрам. Для рассмотрения выбраны следующие параметры бюджета, взятые из официальных данных:

- доходы от внешнеэкономической деятельности;
- налоги, сборы и регулярные платежи за пользование природными ресурсами;
- налоги на товары (работы и услуги), реализуемые на территории РФ;
- налоги на товары, ввозимые на территорию РФ;
- доходы от использования имущества, находящегося в государственной и муниципальной собственности;
- прочее.

Далее в тексте для сокращения будет указываться группа I, группа II и так далее.

Исходные данные представлены в табл. 1.

Таблица 1

ДОХОДНЫЕ СТАТЬИ БЮДЖЕТА РФ ЗА ПЕРИОД 2002-2014 гг.[4]

Млрд. руб. 5 Группа I Доход Группа \ руппа -руппа -руппа Р 2002 1 2125,7 265,4 214,2 532,3 323,3 79,6 710,9 2003 2 2417,9 452,8 219,5 619,0 452,7 112,6 561,3 2004 3 3428,8 859,7 434,2 749,0 320,6 171,6 893,7 2005 4 5127,2 1680,9 872,3 1115,2 464,1 914,4 80,3 2006 5 6278,8 2306,3 1116,6 1017,4 603,9 1085,5 149.1 2007 6 7781,1 2408,3 1157,3 1499,2 897,2 267,1 1552,0 2008 7 9275,9 3584,9 1637,5 1123,6 1169,0 150,5 1610,4 2009 8 7337,7 2683,3 1006,2 1258,3 893,1 421 4 1075,4 2010 9 8305,4 3227,7 1408,3 1442,6 1199,6 427.8 2011 10 11367,6 4664,7 2046,9 1985,0 1543,7 382,0 745,3 2012 11 12855.5 4962.7 2442.8 2228.0 1713.0 965,7 543.3 2013 12 13019,9 5011,0 2554,8 2329,3 1743,2 348,0 1033.6 2014¹ | 13 | 14128,8 | 5257,8 | 2898,4 | 2600,73 | 1752,1 443,0

Для каждой из шести групп рассчитывались коэффициенты уравнения регрессии по формуле:

$$\hat{\boldsymbol{y}}_{i}(t) = \boldsymbol{b}_{0i} + \boldsymbol{b}_{1i}t, \qquad (1)$$

где \mathbf{b}_{0i} и \mathbf{b}_{1i} – коэффициенты, определяемые методами эконометрики;

i = I, II,..., VI.

Оценка коэффициентов уравнения (1) производилась по методу наименьших квадратов (МНК), используя табличный процессор Excel, программа «Регрессия» [1].

Результаты расчетов для первых пяти групп представлены в табл. 2.

Таблица 2

ОСНОВНЫЕ ПАРАМЕТРЫ УРАВНЕНИЯ РЕГРЕССИИ ДЛЯ ПЕРВЫХ ПЯТИ ГРУПП ПАРАМЕТРОВ БЮДЖЕТА

Наимено- вание	Группы				
		=	III	IV	V
b ₀	- 211,378	- 144,398	265,428	43,460	26,597
b ₁	440,807	218,530	165,368	137,478	35,500
R ²	0,951	0,920	0,913	0,936	0,726
F	215,149	127,096	116,123	160,859	32,781
t _{b1}	14,667	11,274	10,776	12,683	5,725
DW	2,167	1,576	1,431	1,642	2,380

Коэффициент детерминации — R^2 , характеризующий долю вариации зависимой переменной, объясненную уравнением регрессии, выше 0,7. Это говорит о хорошем качестве уравнений регрессии для групп I-V. Критические значения статистик Фишера и Стъюдента для n=13 (число наблюдений), $\alpha=0.05$

 $^{^{\}scriptscriptstyle 1}$ Приведены пересчитанные данные за 2014 г.

Галочкин В.Т. ЭКОНОМЕТРИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ ДОХОДА ГОСУДАРСТВА

(уровень значимости): $F_{\kappa\rho} = 4,67$, $t_{\kappa\rho} = 2,16$. Следовательно, уравнение статистически значимо и значим коэффициент регрессии b_{ij} .

Проверка независимости значений случайных отклонений от значений отклонений во всех других наблюдениях проводилась по методу Дарбина-Уотсона (DW). Нижнее и верхнее значения для статистики DW: $d_1 = 1,01$ и $d_2 = 1,34$. Таким образом, все коэффициенты для групп I-V статистически значимы, автокорреляция не обнаружена, и с доверительной вероятностью $\gamma = 0,95$ все уравнения регрессии для указанных пяти групп значимы. Полученные уравнения динамического тренда для этих групп можно применять с целью прогнозирования, при этом временной интервал прогнозирования не должен превышать n/4, в нашем случае не более трех лет. Этого достаточно для решения поставленной нами задачи — прогноза на 2015-й и 2016 гг.

Таким образом, уравнения регрессии по первым пяти группам выглядят следующим образом:

$$\begin{aligned} \hat{y}_{1}(t) &= -211,378 + 440,807t, \\ \hat{y}_{2}(t) &= -144,398 + 218,530t, \\ \hat{y}_{3}(t) &= 265,428 + 165,368t, \\ \hat{y}_{4}(t) &= 43,460 + 137,478t, \\ \hat{y}_{5}(t) &= 26,597 + 35,500t. \end{aligned}$$

Попытка построить уравнение регрессии для группы VI не увенчалась успехом из-за низкой статистической значимости коэффициента b_{vv} . и малых величин коэффициента детерминации R^2 и статистической значимости F всего уравнения. Статистика Дарбина-Уотсона оказалась равной DW = 0,831, что говорит о сильной положительной автокорреляции значений в группе VI. Для устранения автокорреляции этих значений и нахождения тренда использовались: полиномы разных степеней, метод скользящей средней с интервалом три, автокорреляция с лаговой зависимой переменной и другие методы. Ни один из перечисленных методов не позволил построить уравнение тренда для группы значений VI, удовлетворяющее статистическим критериям.

Удовлетворительный результат расчетов по VI группе дало применение метода экспоненциального сглаживания с поправкой на тренд, подробно описанного в работе [2, с. 73].

Рассмотрим простую модель экспоненциального сглаживания:

$$\mathbf{F}_{t+1} = \alpha \mathbf{y}_t + (1 - \alpha) * \mathbf{F}_t, \tag{3}$$

где $\mathbf{F_t}$ – прогноз в момент времени t,

 α – константа сглаживания α ∈ [0;1].

Самый прямой способ оценки прогноза, полученного на основе определенного значения α , — построить график наблюдаемых значений и прогнозов на один шаг вперед (рис. 1). Из графика ясно видно, на каких участках прогноз лучше или хуже. Такая визуальная проверка точности прогноза часто дает наилучшие результаты определения значения α . В нашем случае $\alpha = 0.8$. В табл. 3, колонка 4, приведены данные прогнозных расчетов по всему периоду.

Скорректируем прогноз, полученный методом простого экспоненциального сглаживания, с учетом тренда по следующим формулам:

$$\begin{cases}
FIT_t = F_t + F_{t-1}, \\
T_t = (1-b)T_{t-1} + b(F_t + F_{t-1})
\end{cases}$$
(4)

где *FIT*. – прогноз с учетом тренда;

т. – тренд, выбранная константа сглаживания.

Берем b = 0, 4; $T_1 = 0$. Результаты представлены в табл. 3, колонки 5-7.

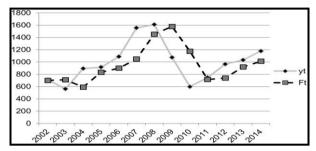


Рис. 1. Прогноз и действующее значение для $\alpha = 0.8$

Таблица 3

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

год	t	yt	Ft	Ft-Ft-1	Tt	FITt=Ft+Tt
1	2	3	4	5	6	7
2002	1	710,9	700,0	-	0	700
2003	2	561,3	708,7	8, 7	3, 5	712, 2
2004	3	893,7	590,7	-117, 9	-45, 1	545,7
2005	4	914,4	833,1	242,3	69,9	903,0
2006	5	1085,5	898,1	65,0	67,9	966,0
207	6	1552	1048,0	149,8	100,7	1148,7
2008	7	1610,4	1451,2	403,2	221,7	1672,9
2009	8	1075,4	1578,5	127,4	183,9	1762,5
2010	9	599,4	1176,0	-402,5	-,6	1125,4
2011	10	745,3	714,7	-461,3	-214,9	499,8
2012	11	965,7	739,2	24,5	-119,2	620,0
2013	12	1033,6	920,4	181,2	0,9	921,4
2014	13	1076,5	1010,9	90,6	36,8	1047,8
2015	14	1100,0	1143,4	132,5	75,1	1218,5
2016	15	-	1188,7	45,5	63,2	1251,8

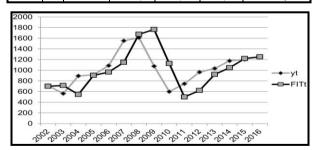


Рис. 2. Действующее (V_t) и прогнозное (FIT_t) значения по группе

В последнем столбце табл. 3 выделены прогнозные значения на 2015-й и 2016 гг. по группе VI.

На графике (см. рис. 2) показаны действующее значение y_t и прогнозное — FIT_t . Подставляя в уравнения (2) t = 14, t = 15, получим прогнозные значе-

ния дохода для 2015-го и 2016 гг. Прогнозное значение для группы VI возьмем из табл. 3. Все результаты сведены в табл. 4. Значения дохода, приведенные в колонке 8, представляют сумму по всем шести группам наблюдений.

Таблица 4

РЕЗУЛЬТАТЫ РАСЧЕТОВ ПО ГРУППАМ ПРОГНОЗА ДОХОДА НА 2015-й И 2016 гг.

Млрд. руб.

Показатели	2015 г.	2016 г.
Группа I	5 959,9	6 400,7
Группа II	2 915,0	3 133,6
Группа III	2 580,6	2 746,0
Группа IV	1 968,2	2 105,6
Группа V	523,6	559,1
Группа VI	1 218,5	1 251,8
Доход (прогноз)	15 165,8	16 196,8

Оценка прогноза доходной части бюджета РФ по совокупности доходов по годам. Проводилось сравнение результатов прогноза дохода, полученного суммой по шести группам (см. табл. 4), с прогнозом дохода, полученным непосредственно по уравнению регрессии, где исходными являлись данные о совокупном доходе РФ по годам. Использовалось уравнение регрессии с одной объясняющей переменной (1). Исходные данные приведены в табл. 5.

Оценка параметров уравнения (1) для данных, приведенных в табл. 5, производилась по МНК, используя табличный процессор Excel, программа «Регрессия».

Получено следующее уравнение регрессии:

$$\hat{y}(t) = 839,777 + 1016,848t.$$
 (5)

Основные параметры этого уравнения коэффициент детерминации $R_2 = 0.952$, значимость уравнения (статистика Фишера) F = 218.892, $t_{b_1} = 14.795$, DW = 1,623. Критические значения для n = 13 (число наблюдений), $\alpha = 0.05$: $F_{KP} = 4,67$, $t_{KP} = 2,16$. Нижнее и верхнее значения для статистики Дарбина-Уотсона (DW) $d_1 = 1,01$ и $d_2 = 1,34$. Таким образом, с доверительной вероятностью $\gamma = 0.95$ уравнение (5) статистически значимо. Прогнозные значения дохода, полученные по этому уравнению, 15075,6 (на 2015-й) и 16092,5 (на 2016 г.). На рис. 3 приведены результаты расчетов по всем шести группам и по

доходной части бюджета (уравнение 5). Для большей достоверности прогноза, выполненного по уравнению (5), данные табл. 5 оценивались с помощью авторегрессионного преобразования Бокса-Дженкинса (АР) [5, с. 131]. Исходные данные (см. табл. 5) преобразовывались по формулам:

$$\begin{cases} y'_{t} = y_{t} - \rho * y_{t-1}, \\ t' = t - \rho * (t-1), \\ b'_{0} = b_{0} (1 - \rho), \end{cases}$$
 $t = 2, 3, ..., n.$ (6)

где ρ — коэффициент автокорреляции остатков первого порядка:

$$\rho \cong \mathbf{1} - \frac{\mathbf{DW}}{\mathbf{2}}.$$
(7)

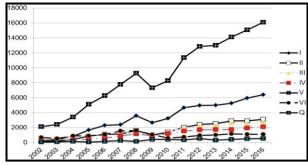


Рис. 3. Динамика прогноза доходной части бюджета РФ, рассчитанная по шести группам параметров и доходной части бюджета, млрд. руб.

Таблица 5

ГОДОВОЙ ДОХОД БЮДЖЕТА РФ ПО ДАННЫМ МИНИСТЕРСТВА ФИНАНСОВ РФ [4]

Млр∂. руб.

Годы	Доход
2002	2 125,7
2003	2 417,9
2004	3 428,8
2005	5 127,2
2006	6 278,8
2007	7 781,1
2008	9 275,9
2009	7 337,7
2010	8 305,4
2011	11 367,6
2012	12 855,5
2013	13 019,9
2014	14 128,8

Первое наблюдение в преобразованном уравнении сохраняется, если предположить:

$$\begin{cases} y_1' = \sqrt{1 - \rho^2} * y_1, \\ t' = \sqrt{1 - \rho^2} * t. \end{cases}$$
 (8)

Исходные данные (см. табл. 5), пересчитанные по формулам (6, 7, 8), представлены в табл. 6.

Методом МНК с помощью табличного процессора Excel, программа «Регрессия», получено следующее уравнение регрессии:

$$\hat{\mathbf{y}}_{AP}(t) = 894,155 + 1011,463t. \tag{9}$$

Таблица 6 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТОВ С ПОМОЩЬЮ АВТОРЕГРЕССИОННОГО ПРЕОБРАЗОВАНИЯ (AP)

V'(t)	t'
2 082,7	0,98
1 992,7	1,8
2 945,2	2,6
4 441,4	3,4
5 253,3	4,2
6 525,3	5
7 719,6	5,8
5 482,5	6,6
6 837,8	7,4

	V'(t)	ť'
ĺ	9 706,5	8,2
ı	10 582,0	9
I	10 448,8	9,8
ı	11 524.8	10.6

Основные параметры этого уравнения коэффициент детерминации $R_2 = 0,928$, значимость уравнения F = 142,235, $t_{b_1} = 11,926$, DW = 1,78. С доверительной

вероятностью γ = **0,95** уравнение (9) статистически значимо. Прогнозные значения дохода, полученные по этому уравнению, 15054,63 (на 2015-й) и 16066,09 (на 2016 г.).

Для определения точности прогнозирования дохода использовалось средняя квадратичная ошибка:

$$S = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{y}_t)^2} .$$
 (10)

Получены следующие результаты:

- оценка прогноза доходной части бюджета РФ по шести параметрам – суммарная ошибка составляет 1003,7 млрд. руб.;
- оценка прогноза доходной части бюджета РФ по совокупности доходов по годам, уравнение (5), – ошибка 927,2 млрд. руб.;
- оценка прогноза доходной части бюджета РФ по совокупности доходов по годам по авторегрессионному преобразованию – ошибка 916,1 млрд. руб.

Сравним полученные выше прогнозные данные с официальными данными Министерства финансов РФ (Минфин РФ) и Федерального казначейства, опубликованными на сайте [4]. Результаты приведены в табл. 7.

Таблица 7

ПРОГНОЗНЫЕ ЗНАЧЕНИЯ ДОХОДНОЙ ЧАСТИ БЮДЖЕТА НА 2015-й И 2016 гг.

Млрд. руб.

Показатели	2015 г.	2016 г.
Прогноз по сумме шести групп	15 165,8	16 196,8
Прогноз по доходу, регрессия	15 075,6	16 092,5
Прогноз по доходу, АР	15 054,63	16 066,09
Официальные данные	15 082,4	16 271,8

Прогнозные значения доходной части бюджета РФ, полученные разными способами, совпадают с официальными значениями в пределах ошибки, указанной выше, которая менее 10%.

выводы

- Получено удовлетворительное согласие прогноза доходной части бюджета РФ на 2015-й и 2016 гг. с официальными данными Минфина РФ и Федерального казначейства.
- 2. Несмотря на общий рост валового внутреннего продукта (ВВП) в РФ, наблюдается снижение темпа роста ВВП (см. например, сайт Федеральной службы государственной статистики). В 2011 г. рост составил 6,3%, в 2012 г. 5,2%,в 2013 г. 2,8% (подробнее см. сайт Международного валютного фонда). В 2014 г. этот показатель существенно снизился 0,2%.
- 3. Полученные в настоящей работе результаты показывают, что при изменении цены на энергоресурсы (в сторону повышения) значительного увеличения до-

- ходной части бюджета в ближнесрочной перспективе не предвидится.
- Основная доля доходной части бюджета РФ приходится на нефтегазовый сектор. В качестве примера, иллюстрирующего это утверждение, приведены официальные данные доли нефтегазовых доходов в бюджете РФ в процентах (табл. 8).

Таблица 8

ДОЛЯ НЕФТЕГАЗОВЫХ ДОХОДОВ В БЮДЖЕТЕ РФ [6]

	%
Годы	Доля
2002	14,7
2003	15,6
2004	30,2
2005	42,2
2006	46,9
2007	37,2
2008	47,3
2009	40,7
2010	46,1
2011	49,9
2012	47,3
2013	48,1
2014	52,5
г п	× æ

5. Для существенного увеличения доходной части бюджета РФ необходимо коренное изменение экономической политики, проводимой в стране по диверсифиции экономики: в первую очередь поднимать промышленный потенциал страны, доведя его до величин, которые были в СССР и сейчас в Китае (≈ 40%). Поднимать долю обрабатывающих производств в ВВП, которая в настоящее время не превышает 15% [3, с. 306]. Необходим ежегодный прирост ВВП не менее 5%, чтобы сохранить место РФ в двадцатке лидирующих стран мира, так как общий темпроста мировой экономики около 3% (подробнее см. сайт СІА World Factbook).

Литература

- Галочкин В.Т. Применение эконометрических методов в построении оптимальной экономической модели [Текст] / В.Т. Галочкин // Аудит и финансовый анализ. – 2013. – №6. – С. 111-112.
- 2. Грешилов А.А. и др. Математические методы построения прогнозов [Текст] / А.А. Грешилов, В.А. Стакун, А.А. Стакун. М.: Радио и связь, 1997.
- Калабеков И.Г. Российские реформы в цифрах и фактах [Текст] / И.Г. Калабеков. М.: Русаки, 2010.
- Министерство финансов РФ [Электронный ресурс] : официальный сайт. Режим доступа: http://www.minfin.ru.
- Новиков А.И. Эконометрика [Текст]: учеб. пособие / А.И. Новиков. – 3-е изд., перераб. и доп. – М.: ИНФРА-М, 2014. – 272 с.
- 6. Veritatis Inquisitor [Электронный ресурс]. 2014. 6 окт. http://www.ria.ru/infografika/20130912/958932396.html.

Ключевые слова

Эконометрика; линейная регрессия; метод наименьших квадратов; факторы регрессии; авторегрессионное преобразование: коэффициенты регрессии; доход; бюджет.

Галочкин Валерий Тимофеевич

РЕЦЕНЗИЯ

Актуальность проблемы. Рецензируемая статья предлагает методами эконометрики оценку доходной части бюджета Российской Федерации на 2015-й и 2016 гг. За базу автор взял официальные данные, публикуемые Министерством финансов РФ (Минфин РФ) и Федеральным казначейством за период 2002-2014 гг.

Актуальность поставленных автором задач обусловлена проблемой внедрения и практического использования в реальной экономике математических методов эконометрического прогнозирования, что в экономических научных публикациях встречается не часто. Теоретической основой используемых методов эконометрического прогнозирования являются математические дисциплины и экономическая теория, экономическая статистика и другие социально-экономические науки.

Среди различных моделей прогнозирования наиболее употребительными на практике являются регрессионные модели: линейные, нелинейные и системы одновременных уравнений. Математический аппарат перечисленных моделей наиболее разработан и удобен в применении с использованием современной вычислительной техники. Опираясь на опубликованные официальные данные, автор строит уравнения линейной регрессии, исследует их качественные и количественные характеристики. В последнем, шестом, случае получить линейное уравнение регрессии не представилось возможным, и автор применяет метод экспоненциального сглаживания с поправкой на тренд. Суммируя результаты по всем шести

уравнениям, автор дает прогноз доходной части бюджета на 2015-й и 2016 гг. Для сравнения: автор получил прогноз доходной части бюджета с помощью уравнения регрессии, построенного по выборке дохода РФ за изучаемый период. В заключительной части автор сравнивает свои результаты с данными прогноза, представленными Минфином РФ. С точностью до ошибки результаты автора совпадают с официальным прогнозом.

Научная новизна и практическая значимость. Ценность статьи автора в том, что он не только предложил путь построения прогноза доходной части бюджета, но и выполнил необходимые вычисления. Это делает работу новой, актуальной и приближенной к реальной жизни. Путь увеличения доходной части бюджета — коренное изменение экономической модели развития страны. Необходимо уйти от траектории прежнего развития (эффект колеи). В настоящее время на эту тему идут многочисленные дискуссии и в научной литературе и средствах массовой информации. Предлагаемый автором подход, подтвержденный математически, создает основу для выбора наилучшего экономического решения.

Заключение. Статья написана грамотным математическим языком, приведенный список литературы и многочисленные ссылки по тексту адекватно отражают содержание статьи.

Рассматриваемая статья может быть рекомендована для опубликования в журнале «Аудит и финансовый анализ».

Бельчук А.И., д.э.н, профессор, Всероссийская академия внешней торговли